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Abstract. One may probe coherence of a qubit by periodically sweeping its control parameter. The qubit is
then excited by the Landau-Zener (LZ) mechanism. The interference between multiple LZ transitions leads
to an oscillatory dependence of the energy absorption rate on the sweeping amplitude and on the period.
This interference pattern allows to determine the decoherence time of the qubit. We introduce a simple
phenomenological model describing this “interferometer”, and find the form of the interference pattern.

PACS. 03.67.-a Quantum information — 85.25.Dq Superconducting quantum interference devices

During the last few years, a number of proposals for con-
structing quantum bits (qubits) from mesoscopic Joseph-
son junctions have appeared [1-4] and first experimen-
tal results in this direction have been reported [5-11].
Large part of these qubits are actually different physical
realizations of an externally controllable quantum double-
well system, with nearly equal depths E; 2 of both wells
|E1 — Es| < wo < E7 (here wy is the oscillation frequency
within a single well), and with the inter-well tunneling am-
plitude A ~ |E; — Es|. The above conditions ensure that
higher eigenstates of the system are separated from the
nearly degenerate doublet by a large gap (compared to A),
and the probability of their excitation can be neglected.
The energy difference |E; — Es| is controlled by an exter-
nal time-dependent parameter x(t), which is either volt-
age for the SET-based “charge” qubit [1,5], or magnetic
flux through the Josephson junction loop for the “phase”
qubit [3,4,6,8]. A review of recent results for both types of
superconductive qubits can be found in [12]. Quantum ma-
nipulations with qubits involve varying in time both z(t)
and A(t) (as well as more complicated two-qubit manipu-
lations). Since the overall scale of possible Ej o variations
as function of control parameter X is very large compared
to relevant values of A (e.g. it was more than 100 times
larger in the design of reference [2]), fluctuations of z(t)
are expected to be one of the most important sources of de-
phasing in such qubits [4]. Indeed, the experimental data
of reference [6] seem to confirm these expectations.
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Thus the first problem to be addressed in the develop-
ment of this type of qubits is to find a convenient probe
which tests whether the device undergoes coherent evo-
lution. Resonant absorption method was used in experi-
ments of references [6,8], whereas Nakamura et al. have
used time-domain manipulations [5]. It may be prefer-
able to employ simpler methods to measure decoher-
ence time of a qubit, without super-high-frequency (in
the GHz range) manipulations. One such method (based
on the measurement of static nonlinear Andreev con-
ductance) was proposed in reference [13] for the spe-
cific case of superconducting phase qubit like those pro-
posed in references [3,4]. Another low-frequency probe is
the observation of Ramsey fringes, which was performed
for superconducting qubits in [7,9]. In the present paper
we propose and analyze a different method to determine
the decoherence time of a qubit by a low-frequency non-
resonant measurement.

The idea is to employ the Landau-Zener (LZ) non-
adiabatic tunneling processes. If the control parame-
ter x(t) changes in such a way that the “collision region”
with A ~ |E; — E3| is traversed, the system may be-
come excited from the lower to the upper level. If the pa-
rameter z(t) is changed periodically, successive Landau-
Zener tunneling events interfere, and such an interference
allows to estimate the decoherence in the qubit. The in-
terference picture is easiest to describe in the setup with
the amplitude of the parameter sweep x( large compared
to the width of the “transition region” (Fig. 1). If the
dephasing time tqepn is larger than the period of the
parameter sweep ty, the interference between successive
Landau-Zener transitions has an oscillatory dependence
upon zo and ty. The interference may be observed from
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Fig. 1. Eigenvalues € of the Hamiltonian (1) depend on the
control parameter x. When the control parameter passes the
Landau-Zener point (z=0), the qubit may be non-adiabatically
excited with the probability v. The upper state may also decay
into the lower one, dissipating the energy into the environment.
The decay probability is w.

the rate of energy dissipation which is proportional to the
occupation of the upper level. The precise form and the
strength of the interference pattern is determined by the
interplay of the coherent Landau-Zener transitions and of
the spontaneous incoherent decay Eo — F;. Performing
interference experiments at a constant offset z,g in the
oscillations of the parameter x(t) and at different values
of gy and ty allows to determine the rates of dephasing
and of inelastic relaxation in the qubit.

Specifically, we model the qubit by the two-level
Hamiltonian

H:<x<t>+e<t> A ) "
A e -é0)

In this paper, we consider only one mode of qubit op-
eration, namely varying the diagonal controlling parame-
ter z(t) while keeping the gap A fixed. We also assume
that the main source of decoherence are thermal and
quantum fluctuations of the control parameter around its
intended value. Such fluctuations are described by the op-
erator £(t). Phase fluctuations of A may also be incorpo-
rated into é (t) by an appropriate gauge transformation.
An example of the physical system leading to
the Hamiltonian (1) is the superconducting phase
qubit [2,6,13]. The control parameter x(¢) in this design
is the magnetic flux through the qubit loop. The diago-
nal coupling to the environment is realized via coupling
to the magnetic flux (including the fluctuations of the ex-
ternal electromagnetic field [4,19] and coupling to nuclear
magnetic spins [18]). We also remark here that the diag-
onal coupling to the environment in the Hamiltonian (1)
does not represent the most general form of coupling. In
general, off-diagonal coupling may also be present, which
would lead to the inelastic decay of the qubit states away
from the Landau-Zener transition region. However, we as-
sume that the off-diagonal coupling is already sufficiently
suppressed: the qubit can preserve its occupation-number
information in the “idle” regime (away from the Landau-
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Zener transition region), and the decoherence is deter-
mined by the diagonal coupling channel.

The quantum variable é (t) describes coupling to the
collective degree of freedom of the external reservoir. It
is a quantum variable corresponding to a collective de-
gree of freedom of the reservoir. The usual model for the
reservoir is an ensemble of harmonic oscillators [20]. Our
treatment will be phenomenological and not involving the
microscopic properties of the reservoir, therefore we do
not explicitly include the reservoir in the Hamiltonian (1).
However, we check the validity of our approach by com-
paring it to the microscopic calculation for the oscillator
bath model (see Appendix).

Depending on the experimental conditions, the tem-
perature of the reservoir may be either lower or higher
than the gap A. We first consider the case of the reservoir
temperature much smaller than the gap A, and later ex-
plain how the results are modified at higher temperature.
Independently of the relation to the gap A, we assume
that the reservoir temperature is always higher than the
sweep frequency ¢, L. this is necessary for our treatment of
dephasing as a Gaussian noise and for our assumption of
independent dephasing processes on different half-periods
of the parameter sweep.

The effect of the coupling to £(t) is twofold. In the tran-
sition region (z(t) ~ A), this coupling has non-vanishing
matrix elements between the two adiabatic levels, and
therefore leads to inelastic transitions between the lev-
els. In the limit of the reservoir temperature much lower
than A, the transitions occur mostly from the upper to
the lower level, thus attenuating the transition probabil-
ity [14]. Away from the transition region (|x(¢)| > A), the

Hamiltonian (1) is almost diagonal, and the effect of £(t)
is dephasing.

The control parameter z(t) is swept periodically, with
the amplitude zg and with the period tp:

x(t) = o sin ? + Toft - (2)
0
For simplicity, we first consider in detail the case of zero
offset zog = 0, and then discuss the interference pattern
at arbitrary z.g.

Each time the control parameter passes the Landau-
Zener point z(t) = 0, the Landau-Zener tunneling occurs.
This tunneling is a quantum-mechanical process sensitive
to the relative phase of the two states. Therefore, the
energy absorption per period depends on the phase ¢,
picked up far from LZ point. The latter phase is deter-
mined by both the sweep amplitude and the frequency
(assuming zog = 0):

t0/2
2
on=2 [ ) +€0) dt=p+dpn, o= 220 ()
0

Here ¢ is the average phase picked up per half-period, and
dpy, are its fluctuations. If we assume that the correlation
time of £(t) is much shorter than to (which is equivalent
to assuming that the reservoir temperature is much higher
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than ¢y 1), the probability distributions of d¢,, are Gaus-
sian and uncorrelated on different half-periods (labeled by
the integer n).

The amplitude x( is assumed to be much larger then
the level-crossing region (xo > A), and the period tg
should be sufficiently large, so that the Landau-Zener
transition probability [21] is small:

A%t
v = exp ( 23000) <1. (4)

Also, zo should not be too large so that the Hamilto-
nian (1) would still adequately describe the system. (For
the superconducting phase qubit it implies that the am-
plitude of the flux modulation should be small compared
to superconducting flux quantum.)

We describe the system evolution in terms of the two-
level density matrix p. The evolution per one half-period
of the parameter variation (2) is given by the master equa-
tion which includes the three effects: the coherent Landau-
Zener transitions, the inelastic decay of the qubit, and the
phase picked up during the system evolution away from
the level-crossing region.

We separate the decoherence effect into the two parts:
the dephasing away from the transition region and the
inelastic relaxation in the transition region. This separa-
tion is possible if the transition region is narrow: A < xg.
Instead of microscopically deriving the relevant couplings
(see e.g. Refs. [14,15]), we include them phenomenologi-
cally as independent parameters in the master equation
on the two-level density matrix. Both types of decoher-
ence are assumed to be small. More precisely, we describe
the decoherence by the two dimensionless parameters: the
average phase fluctuation per one sweep, u = (5p2), and
the probability of inelastic decay per one crossing of the
transition region w. Our parameters w and u are propor-
tional to the longitudinal and transverse relaxation rates,
respectively (defined as Ivelax and Iy in Refs. [12,16]).
These relaxation rates have contributions from different
decoherence channels, and a priori there is no universal
relation between them. Therefore instead of computing
them microscopically, we introduce them phenomenologi-
cally as two independent parameters u, w < 1.

The three small parameters u, w, and v depend, in
principle, on the period and amplitude of the oscillations
of z(t). We shall return to this dependence in the end of
the paper.

The Landau-Zener transition, in the absence of inelas-
tic events, is described by the unitary rotation of the den-
sity matrix:

r ot
pHSpSTv S = (t* 7’*>’ (5)

where t and r are the amplitudes of the transition and of
staying at the same adiabatic level, respectively. Ampli-
tudes r and t satisfy unitarity condition |r|* + [¢[? = 1.
The magnitude of ¢ determines the LZ transition proba-
bility (4): [t|? = v.
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Let us assume first that the reservoir temperature is
much lower than the gap A. Then the inelastic relaxation
processes may be described as attenuation of the ampli-
tude of being in the upper energy state (the case of higher
reservoir temperatures will be discussed later, see equa-
tions (23) and (24) below):

p = VapVa +wp® paa (6)

,o 1 0 o (10 -
““Novicw) 7 T loo)

The equilibrium density matrix p(®) describes the system
in the lower energy state. The quantity pos is the diagonal
element of the density matrix corresponding to the upper
state. The first term in equation (6) describes the decay of
the upper state. It attenuates the amplitudes of being in
the upper energy state by /1 — w. Thus, the probability
that the upper state will not decay is 1—w, and this allows
to identify w as the inelastic decay probability. The second
term in equation (6) describes the probability flow into the
lower state due to the inelastic decay. This term is diagonal
since the decay is assumed to be incoherent. Note that the
equation (6) preserves the trace of the density matrix.

A complete solution of the dissipative dynamics re-
quires simultaneously taking into account the Landau-
Zener processes (5) and the dissipative processes (6) sim-
ilarly to the treatment in references [14,15], which we do
not attempt here. Instead, note that if the transition rates
are small (v,w < 1), the elastic and inelastic processes
may be considered independently. Thus, we simply com-
bine equations (5, 6):

where

p = SVipVi ST+ wpaap® . (8)

The matrices V,, and S do not commute, but the leading
terms in w and v do not depend on the order of multipli-
cation. We ordered S and V,, in equation (8) so that the
trace of the density matrix is conserved.

Finally, the phase picked up far from the Landau-Zener
point produces the relative phase rotation of the upper
and lower states:

p— @anL , b, = exp (ipno./2), (9)
where o, is the Pauli matrix.

In this way, the evolution of the density matrix per one
sweep is described by the master equation

o d, (SprVwST n wp22p<0>) ol (10)
We parameterize the density matrix as
1
p==(ag+ao). (11)

2

The scalar part ag = 1 remains constant, as required by
the normalization of the density matrix. Then the dy-
namics is described by an equation for the polarization
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vector a. The phase factor @,, in (9) rotates the vector a
by the angle ¢ about z-axis. Similarly, the scattering ma-
trix S in (5) rotates the vector a around some axis in
zy-plane. One may redefine the phases of the upper and
lower states so that S describes the rotation about z axis.
(This transformation shifts all phases ¢,, by a constant.)
Thus the polarization vector a evolves per one sweep as

Ant1 = Qnan + wz ; (12)

where @, is
Qn = R.(0pn)R:(p) Rz (0) Aw.

Here R, and R, are the rotation operators about z- and
z-axes, and A, describes the attenuation:

(13)

cosp —sinp 0
sinp cosp 0
0 0 1

)

1 0 0
0 cos@ —siné |,
0 sinf cosf

VvV1—w 0 0
A, = 0 vVi—w 0
0 0 1—w

(14)

The parameter 6 is related to the Landau-Zener transition
probability by v = sin® §/2. Note that the expression (13)
is correct only to the leading orders in the small parame-
ters w and v and should be treated as such.

Equation (12) must be solved for a stationary solution
with fluctuating d¢p,,. Since the phase fluctuations d¢p,, are
assumed to be uncorrelated, averaging over these fluctu-
ations amounts to averaging the evolution operator Q.
After averaging R, (d¢n)

ew2 0 0
R.(0p,) = 0 e w2y (15)
0 0 1

we arrive at the equation on the stationary solution a:

Q = R.(6pn)R.(p)Re(0) Ay

Solving (16) for a, we find the population of the upper
level Py:

(16)

PJr((p):l 2aZ:1 v(u+w) ) )
sw(u +w)? + 2v(u + w) + 4wsin® 2
(17)
where we have kept only the leading terms in the small
parameters w, u, and v.
This equation describes Lorentzian peaks positioned
at ¢ = 2mn. The peaks are sharp if

w > uv, (18)
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in which case the width of the peaks dy is given by

(u+w)?  2v(u+w)
4 wo

(6p)* =

(19)

In the case of an arbitrary non-zero offset z.g su-
perimposed onto the periodic variation of the parame-
ter (2), the two half-periods of the parameter sweep are
no longer equivalent. The phase differences gained on odd
and even half-periods differ by the corresponding phase
offset Yot = 2toxofr /T Yn = @+ 0pn £ por, with the plus
and minus sign for even/odd half-periods respectively. As
a consequence, the period of the master equation (10) dou-
bles, as it now includes two half-periods of the parameter
sweep. In the interference pattern this produces secondary
interference peaks at ¢ = w4 27n. The relative intensities
of the two peaks depend on the offset po, with the two
intensities equal at pog = 7/2 + 7n, and with one of the
two peaks disappearing at pog = m™n.

A tedious but straightforward calculation results in the
following extension of the formula (17) to the case of ar-
bitrary @of:

v(u 4 w) [1 4 cosp cos o + = (u + w)?
Pi(e) = [ st wf]

D((p, Saoff)
(20)
where
1 9 5
D(p, poft) = iw(u + w)* + 2wsin® ¢
1
+2v(u 4+ w) |1+ cosp cos o + g(quw)2 (21)

This expression is again valid only to the leading or-
ders in the small parameters u, v, and w (and coincides
with Eq. (17) for wog = 0 only in this limit). The terms
%(u +w)? in the numerator and in the denominator are
relevant only near the points 1 4 cos p cos p.g = 0; away
from these points, the terms %(u—i—w)2 are beyond the pre-
cision of equation (20) and should be disregarded. Several
examples of interference curves at different values of @on
are plotted in Figure 2. Provided the condition of strong
interference (18) is satisfied, the height of secondary peaks
in (20) become equal to the background at

U+ w
Poff = 2 .

(22)

Note that the secondary peak is much narrower than the
primary one as long as its height is small: the width of
small peaks is determined solely by the strength of deco-
herence processes u + w (only the first term in Eq. (19)),
whereas the width of the high primary peak involves the
Landau-Zener amplitude v.

So far our discussion assumed the reservoir tempera-
ture Tyes much lower than the gap A. Taking into account
a finite reservoir temperature, the inelastic processes in (6)
must include not only transition from the upper level to
the lower one, but also the reverse transitions from the
lower level to the upper one (absorbing energy from the
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Fig. 2. Interference pattern P, () as given by equations (20)
and (21) for different values of the offset @os. The non-
adiabatic excitation probability v = 1073, the decay proba-
bility w = 1073, the dephasing factor v = 0.1. The four curves
(a)-(d) correspond to wog = 0, /32, 7/8, and /2 respec-
tively.

reservoir). The single transition probability w should then
be replaced by the two probabilities w; and ws. equa-
tion (6) is replaced by

(0)

p = VeV + w19\ oz + wapt p1y (23)

0 10 0 00
pg):(OO)’ 05)2(01)- (24)

We give the expressions for the transition probabilities w;
and wsy in terms of the environment spectral function in
the appendix. Repeating the same derivation as before,
we arrive to the equation

Aap41 = Qnan + (wl - 'LUQ)i (25)

replacing equation (12), with @, given by the same ex-
pressions (13) and (14), except that now

(1—wy)(1—ws) 0 0
Ay = 0 V(A= w1)(1—wz) 0 (26)
0 0 1—wy—wa

For small w; and ws, this expression for A,, is equivalent
to introducing the effective decay probability w = wi +ws.
Then the solutions may be obtained from our previous
low-temperature results by a simple rescaling a — a(w; —
wa) /(w1 +ws). In terms of the average occupation number
of the upper level P, (¢), this translates to

w1 — w2 w2
w1 + w2 W+ w2

Pi(p) = Pi(p,w = wi +w2) . (27)
where P, (¢, w) in the right-hand side is given by equa-
tions (17) or (20). In other words, at finite reservoir tem-
peratures, the interference pattern is simply rescaled by
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the factor (wy — wa)/(w1 4+ waz). At low reservoir temper-
atures, Tres < 4, the ratio wy/w; becomes exponentially
small: wy /w1 ~ exp(—2A/T}es). At high reservoir temper-
atures Ties > A, the probabilities w; and wy are close to
each other, (wq — ws) /(w1 + wa) ~ A/Tyes, which accord-
ingly decreases the amplitude (but not the sharpness) of
the interference pattern Py ().

Experimentally, it may be possible to measure the en-
ergy absorption which is proportional to the population
of the upper level P,. By observing the appearance of
the secondary peaks at varying pog, it should be possi-
ble from (22) to determine the combined decoherence rate
u + w. This is precisely the quantity which defines the
quality of the qubit. The condition (18) should be ful-
filled in order resolve well interference picture. Estimating
w ~ IelaxtoA/zo and u ~ I'yty (examples of estimates
for longitudinal and transverse relaxation rates I q1ax and
I'y for superconductive qubits can be found in [12,16]),
and using (4), one finds the condition

Frelax Fd)I'O AQtO

A > A2 exp( 2x0>'
The condition (28) should be fulfilled together with in-
equalities u,w < 1. All these conditions together are
compatible for low enough dephasing rate I'y; taking for
the sake of estimate I'y/A = 1073 and Ieax < Iy (cf.
Ref. [16]), we find broad interval of allowed z¢ and to. Ex-
perimentally, values of I'y /A ~ 1072 were measured in the
first superconductive qubits [5,6], whereas much smaller
normalized dephasing rate of order 10~% was achieved for
a non-quasiclassical device studied in reference [9].

It may be useful to perform measurements at different
values of the amplitude zg and period ty of the param-
eter sweep. Both Landau-Zener transition probability v
and the inelastic decay probability w depend only on the
velocity at the transition point. If g and tg are changed
simultaneously so that xz(/ty is kept constant, v and w
should also remain constant. At the same time, for short-
range correlations of £(¢), the dephasing u scales linearly
with to: u = t9lp. Under these assumptions, from mea-
surements at different xzg and %y it may be possible to
determine the dephasing rate I'y, and the transition prob-
abilities v, and w.

(28)
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Appendix: The microscopic derivation
of the equation for the density matrix

To establish connection between the microscopic Hamilto-
nian (1) and the phenomenological equations (6) and (23),
we compute the density matrix directly. We consider the
evolution of the qubit during one sweep, treating the cou-
pling to the environment perturbatively, find correction to



268

the density matrix p, and compare it with the expansion
of equation (23) in small w; and ws. First, we rewrite the
Hamiltonian (1) in the basis of adiabatic states:

= Hy(t) + V(). (29)

where the unperturbed Hamiltonian Ho (t) is diagonal,

Hy = 6,61 e = \/22(t) + A2, (30)
and the perturbation V(t) is given by
V(t) = £(t)(cos 046, + sin0,6,); 0, = tan™? @ (31)
x

We neglect the probability of the LZ transition, and con-
sider only the transitions due to the coupling to the en-
vironment V(t) In doing so, we assume that the charac-
teristic energies involved are or order of ¢, ~ A, and the
main ¢-dependence of the perturbation V(t) is due to fast

fluctuation of & (t). Since 6; changes essentially only on the
large time scale Atg/xzq, we will treat it as a slow variable.

To compute the evolution of the density matrix p under
the Hamiltonian (1), one may use Liouville equation in
Heisenberg representation

pt) =i [E0U (D), (1) (32)

where
t
U(t) = sin 027X g e727:X0. () =2 / € dt,
—o0
(33)
where x(t) is the phase difference between the two adia-
batic states. The perturbation theory with respect to V(t)
gives, to the second order,

t

<t>+z‘/dt1 (€@ t0), po(0)

/ dt: / s |

where pg is the (time-independent) density matrix in zero
approximation. Now, we average equation (34) over fluc-

tuations of & (t). The first order term vanishes, and one
has for dp(t) = p(t) — po

t t1
*f/dtl/dtg[Ut

Here Q(t) (£()E(0)) is the correlation function of
the environment. Note that since £(¢) is quantum vari-

p(t) = po

(1), |§t)0 (k). po] | (39

U(t2) Q(t1 — t2)po

— poU (t2) Q(t2 — t1)].  (35)
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able, Q(t) # Q(—t). Rewriting the commutator in equa-
tion (35), one finds

t 00
dp11(t) = —2Re / dtl/dTQ(T) sin 6y sin 6;_,
o 0
X (mleix(tl)ﬂ'x(trﬂ . pQQeix(trT)*ix(tl)), (36)

o0

- fa

0

% (puezx(tl—T)—zx(tl) _pmezx(tl)m(tl—r)), (37)

dp12(t) (—7)]sin 6 sinb;_,

and also dpaa(t) = —dp11(t), dp21(t) = 0p3,(t). The dom-
inant contribution to the integral over 7 in equation (36)
comes from the region 7 ~ ¢, ! and one can use an ap-
proximation x(t1) — x(t1 — 7) &~ 27€, . For the oscillator
t) = Z%(aie“"'t + af ety
i

bath
sza a; ,
(38)

integrals in equation (36) can be expressed in terms of the
environment spectral function [20]

e nv

- Zz_ija(nwi) (39)
/Q WTdT—Qz/QJ dQ[ 1++g(7 30
_ #Q)zo] . (40)

where n(£2) = (exp(2/Tres) — 1)1 is Bose-Einstein dis-
tribution function, and T} is the reservoir temperature.

After a straightforward calculation, one arrives to the
correction to the density matrix at the end of one sweep:

dp11(00) = —pr1wa + paowy (41)
1 .
dp12(o0) = ~5 (w1 + w2)p12 + iPp12. (42)
Here
wy = 4n / [1+n(26)] J(e;)sin® Oy e, dt — (43)
—o0
(oo}
wy = 47 / n(2€;)J (e;) sin® 0y e; dt (44)
are the transition probabilities, and
T T 2n(92) + 1)7(2) 240
@:/etdtsm%/["( s ]9(2) (45)
€ —

—00 0
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the additional phase picked up during the sweep. This

phase shift is due to the renormalization of the gap A due

to

the interaction between the qubit and the environment.
Comparison of equations (41) and (23) shows that the

phenomenological equation (23) is correct in the pertur-
bative limit. Also, since wy and ws contain 1+ n(2¢;) and

n(

2¢;) respectively, in the low-temperature limit (Tyes <

A) the decay rate wy is finite, while the excitation rate ws

is

thermally assisted: wo ~ exp(—2A4/Tres)-
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